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Alternative coupled integrable optical soliton system with higher-order effects
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The system of coupled Hirota equations, which explains the simultaneous propagation of two fields in a
nonlinear optical fiber with the inclusion of higher-order linear and self-steepening effects, is considered. By
making use of a Painlév@ngularity structure analysis, the system is found to be an exactly integrable soliton
system for three choices of physical parameters. Two of the soliton conditions are already well studied. For the
third system, the soliton solutions are obtained using bilinear forms.
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I. INTRODUCTION and stimulated Raman scatteri(@RS.
When solitons consist of several interacting modes, the

Optical communication through fibers has generated conPulse propagations are described by a system of coupled

siderable interest in research activities among scientists aflonlinear partial differential equations. In the case of wave-

over the world. In particular, soliton-type pulse propagationlength division multiplexind 1-3], we shall consider at least

plays a vital role in our modern communication systems}‘évgsoﬁﬂzalcgﬁlciz dSIrTour:}%réz?uggﬂi\gh?ro(tlj\tlLg)gheerlgtciifr:;f-
[1-3]. This is considered to be the tool of the future in ’ P 9 q

= . L take the form
achieving low-loss, cost-effective communication throughout

the world. Soliton-type pulse propagation through nonlinear i1+ C101ee+ 2( || *+ Blazl?) a9, =0,
optical fibers is realized by means of an exact counterbalance ) 5 5
between the major constraints of the fiber, viz., group veloc- i02,1 C2020+2(B]A1]“+ ¥]029)@2=0, (1)

ity dispersion, which broadens the pulse, and self—phasg,—vherecl andc, are group velocity coefficientsy and y are

modulation, which contracts the pul_se. Recent expe_riment elf-phase-modulatio(6PM) coefficients, angB is the cross-
achievements have also increased interest in potential appliyase-modulatiofXPM) coefficient. Using the inverse scat-
cations of optical solitons such as optical switchi8A]. It tering transform method, soliton solutions have been gener-
is well known that optical bright solitons can be used forgteq whenc,=c,=1 and a=8=y=1 [6]. But as these
long distance communication to drastically increase the bigquations do not admit exact solitons for arbitrary values of
rate of fiber transmission systems. On the other hand, dafke self- and cross-phase-modulation coefficients, to con-
solitons, which are reflectionless radiation modes of thestruct exact soliton solutions, we assume the value of the
waveguides, also have a localized shape similar to brightllipticity angle to be 35°. With this assumption, it has been
solitons, but with complex envelope and nonvanishing asshown that the SPM and XPM coefficients are equal and the
ymptotics. In the case of temporal solitons, the group velocfesulting coupled NLSCNLS) equation is the well-known
ity dispersion is known to vanish at a wavelength of &rB  completely integrable soliton system also called the Mana-
and is positive at larger wavelengths and negative at shortdiov model. The soliton aspects of the Manakov model have
ones. Since silica optical fibers always have a positive Kerbeen well studied by many authors in different contexts
coefficient, the two different signs of the group velocity dis-[6—13]. Recently, using Hirota’s bilinear form and by intro-
persion support two different types of solitons, dark in theducing additional parameters, thesoliton solutions for the
former case and bright in the latter cdde-4]. CNLS equations have been constructed and inelastic colli-
With the current interest in using solitons as pulse bits insions of solitons have been observi@]. By constructing
long optical fibers for communication purposes, it is impor-additional motion invariant laws based on the concept of
tant for us to reevaluate the practicality of using analyticaldegenerative dispersion, in addition to Et), Zakharov and
techniques for predicting the behavior of such bits with suit-Schulmann established the integrability of one more system
able linear and nonlinear optical effects. Since such pulsesf the form[7]
are near a pure soliton solution, it becomes feasible to use : 2 o
analytical soliton techniques and the potential for obtaining 101+ A 2(/d1[*—02[*) 0, =0,
useful analytical results becomes very high. A slowly varying e in. 12 X4 —
amplitude electromagnetic wave in a nonlinear medium is 192z~ G20 2( =]l *+1021962=0. @
usually described by the nonlinear Satfimger (NLS) equa-  Using a Painlevanalysis, the Painleveroperties of Eqs(1)
tion [5]. In order to increase the bit rate, it is necessary tcand(2) have been establish¢#l]. When compared with Eq.
decrease the pulse width. As the pulse lengths become cont), Eq. (2) has attracted less attention. In recent years, sev-
parable to the wavelength, however, the NLS equation beeral completely integrable single and coupled NLS-type
comes inadequate, additional terms have to be included, arefjuations which admit bright and dark optical solitons have
the resulting pulse propagation is called a higher-order nonbeen proposed and well investigated in nonlinear fiber optics
linear Schrdinger equatior{1]. This equation includes ef- [6—20]. Equation(2) can be used to explain the wave propa-
fects like third-order dispersiofT OD), self-steepeningSS), gation in birefringent media in which we have both anoma-
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lous and normal dispersion and focusing and defocusingirst, in Sec. Il, we establish the Painlepsoperty for con-
nonlinearity. In addition to the above physical situation, thedition (iii). Then, in Sec. lll, we construct the soliton solu-
system is also used to explain two pulses copropagating itions by a bilinear method.
optical fibers.

If we are propagating high-intensity ultrashort pulses Il. PAINLEVE ANALYSIS
through optical glass fiber, then the Manakov model is found )
to be inadequate and one has to incorporate higher-order lin- Painleveanalysis is a powerful method for identifying the
ear and nonlinear effects. In order to increase the transmigomplete integrability properties of nonlinear partial differ-
sion capacity of the network systems, one has to increase tfe#tial equationsNPDES. Weiss, Tabor, and Carnevd[21]
number of channels with minimum frequency difference.introduced an algorithm for carrying out the Painlearealy-
But, in reality, even a single-mode fiber admits a birefringentsis of given NPDEs.
effect, and hence the two pulses are propagating in orthogo- Under the parametric condition;=—c,, a=—8=1,
nal directions. In this case, depending on the field strengthgnd u;=— u,=—v1=v,=3, EQ.(3) turns out to be
the field propagating along one direction may change the
refractive index of the other one, and vice versa. Excluding 11+ Azt 2(|02/?= 102?01
the SRS effect, the copropagation of two ultrashort pulses . 2 2 % _
including the effects of TOD and SS is governed by the ~ie[Qaeeet (6]0a|*~ 302/ *) dre— 30203 621 =0,

following generalized coupled equatiphl]: . 20|04~ 127
2z Y2ttt 1 142 2

i01¢+C1012,+ 2(a0q)*+ Bl %) ay —ie[ Qo+ (3]d1]?— 602]?) dz+ 30207 01,1 =0,
—ie{Q1y77t (24|02 ?+ v4| 9ol A1, (4)
+ 11019505, =0, (33  where we choosee=1 andc,=1. To begin with, Eq(4) is

rewritten in terms of its complex functions by defining
=a, q¥ =b, g,=c, g% =d, and the following equations are

i+ Co02,,t 2(ﬁ|q1|2+ ’}’lQ2|2)C]2 obtained:
—ie{0as57t (v2|A1]?+212/05] %) 02 .
- s 0 ‘ - ia,+a,+2(ab—cd)a
14 =VU.
20192012 —ie[ay+(6ab—3cd)a,—3adc]=0,
The coupled equati(_)n proposeq by Tasgal and Potasek —ib,+by+2(ab—cd)b
[11] is the coupled version of the Hirota equatidr¥], and a
coupled higher-order NLS system has been proposed by us +ie[ by +(6ab—3cd)b;—3bcd]=0,
[10] and well studied by several authdrsl—16.
The generalized version above has been considered here ic,—cy—2(ab—cd)c
for the purpose of analyzing various possibilities of inte- _
grable soliton cases from the point of view of Painleve —ig[cy+(3ab—6cd)c,+3bca]=0,
analysis. It has already been reported that £).admits
soliton solutions for the conditions;=c,, a=B=7y, w1 —id,—dy—2(ab—cd)d

=vi=u,=v,=3 [11]. For the first condition, exact
N-soliton solutions have been reported,18 which corre-
spond to bright solitons. Recently, we have shown from
Painleveanalysis that there is one more integrable case,
=Cy,=—1, a=B=vy, u1=v,=u,=r,=—23, correspond-
ing to a dark-dark soliton pair, which has not been analyzed w
for this system[12—14. In this context, it should be men- _p _ i
tioned that for this system, Park and Shin have constructed azh=¢ jZO 3(zbé(z1),
the Baklund transformation and analyzed the dark-dark,
bright-dark, and bright-bright pairs of soliton solutions o
[19,20). b(z,t)=¢9>, bj(z.)$l(z),
In this paper, the integrability aspects of the coupled Hi- =0
rota equation are analyzed using a Painlswgularity struc-
ture analysis. The above system is found to be integrable for ” )
the following choices of parameters(i) c;=c,, a=p c(zt)= ¢er0 ci(zH)¢l(zb),
=y, p1=v1=pp=v=3; (i) c1=c=—1, a=8=7v, uy
TVIT 2T V2= _gi A(iii )h C1= ;_C_z, ;f): _dB(T)% Ml:ll o
— uy=—v1=v,=3. As the conditiongi) and (i) are we _ s ‘ j
studied[11,12, we are interested in analyzing conditiin). dzt)=¢ jgo di(zt) iz ©

+ie[dy+ (3ab—6cd)d,+3adb]=0. (5

aI'he Painleveanalysis is carried out by seeking a generalized
Laurent series of the form
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in the neighborhood of the noncharacteristic movable singuTo find the powers, called resonances, at which the arbitrary
lar manifold ¢(z,t)=0 and searching for conditions under functions can enter into the Laurent series, the expressions
which the solutions are free from movable critical manifolds.

The parameter®, g, r, and s are negative integers to be

determined. a=apd 'taydl Tt b=bod bl
Assuming the leading order of the solutions to be of the
form a~ay¢P, d~dy¢9, c~cy¢', andd~d,¢°, they are C:CO¢71+C1¢J‘71, d:d0¢71+dj¢j71, @)

substituted in Eq(5) and upon balancing the different terms
the following results are obtained:
are substituted in Eq(5) and, keeping the leading order

p=g=r=s=—1, aghy—Codo=— ;. (1) terms alone, the following determinant is obtained:
|
A —6ale, —3(j—2)agdo 6a0Co by
—6bg ey A Sbododc  —3(~2)bocody| _ .
3(j—2)boCodt  —6a0Coshi B 6c5¢ '
—6bgdohe  3(j —2)agdo¢h 65 B
|
where From the above set of equations, the following result is ob-
. ) ] 3 ] ] 3 tained:
A=(=1(J—-2)(j=3) ¢y +3(] —2)agbodr—3(j —2) ¢y

and aobl+ albO:C0d1+ CldO' (12)

B=(j—1)(j—2)(j—3) ¢ —3(j —2)codohi— 3(j —2) %

Expanding the determinant and solving by making use of EqSubstituting Eq.(12) in Eq. (11), after simplification, it is

(7), the resonances are obtained as found that one of the four variables,, b;, c;, andd; is
. arbitrary, corresponding to the resonancg=at. In a similar
j=-1,0,0,0,1,2,2,3,4,4,4,5. (10 manner, collecting the coefficients ab(2,¢ 2, ¢ 2, ¢ 2),

(¢ Lo ho Lo, (6°¢°,¢°¢°), and
(¢, ¢, p*, ¢") one can easily check that the system admits
a sufficient number of arbitrary functions at other resonance

?ny three of the dl_‘ourtfutrr:ctlomo, bo, Co. Oa(r)rc:)dgrarf(_e grtbhl_ values. As the system admits a sufficient number of arbitrary
rary, corresponding to the resonancep=atl,u,b. 10 Ind e ¢,tions it is concluded that the system is expected to be

arbitrariness at the other resonance.values, to simplify thﬁnegrable from the Painlévanalysis point of view. As we
calculations, Kruskal's reduced manifold ansai¢z,t)=z .o "ot able to construct the Lax pair for @), in the

() =0 is applied, and we pror_:eed further b.y.COHeCtmgfollowing the soliton solutions are generated by the bilinear
the various powers of¢. Collecting the coefficients of

The resonance gt=—1 corresponds to the arbitrariness of
the singularity manifoldp(z,t). From Eq.(7), it is clear that

method.
(¢ 3,03 ¢ 3 ¢ %), the following set of equations is ob-
tained:
_2a0_3i8(2a0b0a0t_2a0b0al_2agbl_a0tC0d0 lll. BILINEAR FORM
+a,Codg— agdnCor+ agC1dg+ 2a9Cod;) =0, Once the integrability is proved, the next step is to look
1070 SoTomor T E0HE oCocls) for the soliton solutions. Hirota’s bilinear approath?] is
—2by— 3ie(2agbgb; — 2agbobgy+ 2b2a; + boCodo used here to obtain soliton solutions. In this, the transforma-
tion
_b]_COdOJf‘ bOCOdOt_bOCOdl_2bOCld0):01
2¢q— 3ie(bgCoag — a1beCo+ 2¢5d1 — 2CoCodo— C1a0bg G H
W=F., %=g (13

+a0b0C0t_2a0b1C0+ 2COC1d0):0,
2a,— 3ie(2bodgay — 2aghedy— 2d3c; — aghgdo; + agb;d
0 #(2bodoay 0rorTo oL FOTOToL T FoELTo is introduced, wher& andH are complex functions arfd is
+2cdodg; +agh,d;—2cydgd;) =0. (1)  areal function, and the bilinear operator is defined as
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DID{G(zt)F(z',t")

[ a\m o a)”G o
=\3z7777) \at av) C@OFE.)

z=7't=t'

(14

Substituting Eq(13) in Eq. (4), one obtains
(iD,+D?-ieD3)GF=0, (159
(iD,—D?-ieD3)HF =0, (15b)
DIFF=2(|G[*=[H[?). (150

In order to find the single-soliton solution, the following an-

satz is assumed:

G=AG;, H=\H;, F=1+\%F,, (16)

where\ is an arbitrary parameter. Substituting E@6) in
Eq. (15 and collecting similar powers of, the following
results are obtained:
(iD,+D?-ieD?)G,;x1=0,
(iD,—D?—ieD)H,;x1=0 for A,

D2(1XF,+F,x1)=2(|G4|?—|H|?) for N2 (17)
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where 7,=In(2w;/\[g1]>—[h;[?). From the above, it is
clear that the solutions obtained are bright soliton solutions,
although we assumed anomalous and normal dispersion in
Eq. (4).

In this paper, considering higher-order dispersion and
self-steepening, the possibility of soliton-type pulse propaga-
tion in a system of coupled Hirota equations is analyzed
through Painlevesingularity structure analysis. Using Pain-
leve analysis, the coupled Hirota system is found to be inte-
grable for the following choices of parameterdi) c;
=C, a=f=y, p1=v1=u=v,=3; (i) c;=C,= -1, &
=B=y, p1=v1=p=vy==3; (i) ¢;=—Cp, a=—p
=7, u1=—ur=—v1=v,=3. The conditions(i) and (ii)
have been well studied in the literature. For the condition
(iii), using Painleveanalysis, we proved the existence of a
sufficient number of arbitrary functions and hence concluded
that the system is integrable. It is also interesting to note that
one can check the above condition using the recursion op-
erator method. Using that method, we can show that condi-
tions (i) and iii) are the next hierarchy of Eqél) and(2).
Hence we have derived the hierarchy of the coupled NLS
equations. Soliton solutions have been generated using the
Hirota bilinearization technique. Although the soliton condi-
tions obtained in this paper are very rigid from the physical
point of view, we would like to point out the followindi)
First, from optical soliton theory point of view, our system
adds to the already existing integrable soliton theory and can
explain the simultaneous propagation of solitons with

One can easily check that the solution that is consistent witBnomalous and normal dispersidii) In recent years, sev-

the system containing E@17) is
Gi=g:exp(n1), Hi=hyexp(n,),

_(lg1l*—1h4]?)

Fo= 407 (18

exp( 71+ 72),

where 7;=(—ew3+iw?)z—wit and 7,=(—swi—iw3)z
— w4t. Substituting Eq(18) in Eq. (16) and then in Eq(13),

eral experimental groups have investigated the simultaneous
propagation of bright and dark solitons in optical fiber. The
soliton solutions given in this paper give some idea about the
nature of the pulse width, shape, and velocity of the solitons.
(iii) As pointed out in Ref[14], one can also construct soli-
tary wave solutions without imposing any restrictions on the
physical parameters so that the results obtained can be re-
lated to real experimental situations. In a recent paper, Sak-
ovich and Tsuchida investigated the Painlgw®perty of

the one-soliton solutions for the coupled Hirota equations argymmetrically coupled higher-order NLS equatiof2].

obtained as

0107 expi wi2)

.= sech(sw3z+ wit+70), (199
NERE '
wlhl exq_ia)iZ) 3
q,= sech(ewiz+ wit+ 7p), (19b
V]G] 2= hy

Due to symmetry nature of problem, they have not obtained
the conditions reported in this paper.
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