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Alternative coupled integrable optical soliton system with higher-order effects

K. Porsezian
Raman School of Physics, Pondicherry University, Pondicherry 605 014, India

~Received 2 November 2002; published 18 December 2003!

The system of coupled Hirota equations, which explains the simultaneous propagation of two fields in a
nonlinear optical fiber with the inclusion of higher-order linear and self-steepening effects, is considered. By
making use of a Painleve´ singularity structure analysis, the system is found to be an exactly integrable soliton
system for three choices of physical parameters. Two of the soliton conditions are already well studied. For the
third system, the soliton solutions are obtained using bilinear forms.
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I. INTRODUCTION

Optical communication through fibers has generated c
siderable interest in research activities among scientists
over the world. In particular, soliton-type pulse propagat
plays a vital role in our modern communication syste
@1–3#. This is considered to be the tool of the future
achieving low-loss, cost-effective communication through
the world. Soliton-type pulse propagation through nonlin
optical fibers is realized by means of an exact counterbala
between the major constraints of the fiber, viz., group vel
ity dispersion, which broadens the pulse, and self-pha
modulation, which contracts the pulse. Recent experime
achievements have also increased interest in potential a
cations of optical solitons such as optical switching@3,4#. It
is well known that optical bright solitons can be used
long distance communication to drastically increase the
rate of fiber transmission systems. On the other hand, d
solitons, which are reflectionless radiation modes of
waveguides, also have a localized shape similar to br
solitons, but with complex envelope and nonvanishing
ymptotics. In the case of temporal solitons, the group vel
ity dispersion is known to vanish at a wavelength of 1.3mm
and is positive at larger wavelengths and negative at sho
ones. Since silica optical fibers always have a positive K
coefficient, the two different signs of the group velocity d
persion support two different types of solitons, dark in t
former case and bright in the latter case@1–4#.

With the current interest in using solitons as pulse bits
long optical fibers for communication purposes, it is imp
tant for us to reevaluate the practicality of using analyti
techniques for predicting the behavior of such bits with su
able linear and nonlinear optical effects. Since such pu
are near a pure soliton solution, it becomes feasible to
analytical soliton techniques and the potential for obtain
useful analytical results becomes very high. A slowly varyi
amplitude electromagnetic wave in a nonlinear medium
usually described by the nonlinear Schro¨dinger~NLS! equa-
tion @5#. In order to increase the bit rate, it is necessary
decrease the pulse width. As the pulse lengths become c
parable to the wavelength, however, the NLS equation
comes inadequate, additional terms have to be included,
the resulting pulse propagation is called a higher-order n
linear Schro¨dinger equation@1#. This equation includes ef
fects like third-order dispersion~TOD!, self-steepening~SS!,
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and stimulated Raman scattering~SRS!.
When solitons consist of several interacting modes,

pulse propagations are described by a system of cou
nonlinear partial differential equations. In the case of wa
length division multiplexing@1–3#, we shall consider at leas
two optical fields simultaneously. Without higher-order e
fects, the coupled nonlinear Schro¨dinger ~NLS! equations
take the form

iq1z1c1q1tt12~auq1u21buq2u2!q150,

iq2z1c2q2tt12~buq1u21guq2u2!q250, ~1!

wherec1 andc2 are group velocity coefficients,a andg are
self-phase-modulation~SPM! coefficients, andb is the cross-
phase-modulation~XPM! coefficient. Using the inverse sca
tering transform method, soliton solutions have been ge
ated whenc15c251 and a5b5g51 @6#. But as these
equations do not admit exact solitons for arbitrary values
the self- and cross-phase-modulation coefficients, to c
struct exact soliton solutions, we assume the value of
ellipticity angle to be 35°. With this assumption, it has be
shown that the SPM and XPM coefficients are equal and
resulting coupled NLS~CNLS! equation is the well-known
completely integrable soliton system also called the Ma
kov model. The soliton aspects of the Manakov model ha
been well studied by many authors in different conte
@6–13#. Recently, using Hirota’s bilinear form and by intro
ducing additional parameters, theN-soliton solutions for the
CNLS equations have been constructed and inelastic c
sions of solitons have been observed@9#. By constructing
additional motion invariant laws based on the concept
degenerative dispersion, in addition to Eq.~1!, Zakharov and
Schulmann established the integrability of one more sys
of the form @7#

iq1z1q1tt12~ uq1u22uq2u2!q150,

iq2z2q2tt12~2uq1u21uq2u2!q250. ~2!

Using a Painleve´ analysis, the Painleve´ properties of Eqs.~1!
and~2! have been established@8#. When compared with Eq
~1!, Eq. ~2! has attracted less attention. In recent years, s
eral completely integrable single and coupled NLS-ty
equations which admit bright and dark optical solitons ha
been proposed and well investigated in nonlinear fiber op
@6–20#. Equation~2! can be used to explain the wave prop
gation in birefringent media in which we have both anom
©2003 The American Physical Society07-1
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lous and normal dispersion and focusing and defocus
nonlinearity. In addition to the above physical situation, t
system is also used to explain two pulses copropagatin
optical fibers.

If we are propagating high-intensity ultrashort puls
through optical glass fiber, then the Manakov model is fou
to be inadequate and one has to incorporate higher-orde
ear and nonlinear effects. In order to increase the trans
sion capacity of the network systems, one has to increase
number of channels with minimum frequency differenc
But, in reality, even a single-mode fiber admits a birefring
effect, and hence the two pulses are propagating in ortho
nal directions. In this case, depending on the field stren
the field propagating along one direction may change
refractive index of the other one, and vice versa. Exclud
the SRS effect, the copropagation of two ultrashort pul
including the effects of TOD and SS is governed by t
following generalized coupled equation@11#:

iq1t1c1q1zz12~auq1u21buq2u2!q1

2 i«$q1zzz1~2m1uq1u21n1uq2u2!q1z

1n1q1q2* q2z%50, ~3a!

iq2t1c2q2zz12~buq1u21guq2u2!q2

2 i«$q2zzz1~n2uq1u212m2uq2u2!q2z

1n2q1* q2q1z50. ~3b!

The coupled equation proposed by Tasgal and Pota
@11# is the coupled version of the Hirota equation@17#, and a
coupled higher-order NLS system has been proposed b
@10# and well studied by several authors@11–16#.

The generalized version above has been considered
for the purpose of analyzing various possibilities of in
grable soliton cases from the point of view of Painle´
analysis. It has already been reported that Eq.~3! admits
soliton solutions for the conditionsc15c2 , a5b5g, m1
5n15m25n253 @11#. For the first condition, exac
N-soliton solutions have been reported@11,18# which corre-
spond to bright solitons. Recently, we have shown from
Painlevéanalysis that there is one more integrable casec1
5c2521, a5b5g, m15n15m25n2523, correspond-
ing to a dark-dark soliton pair, which has not been analy
for this system@12–14#. In this context, it should be men
tioned that for this system, Park and Shin have construc
the Bäcklund transformation and analyzed the dark-da
bright-dark, and bright-bright pairs of soliton solution
@19,20#.

In this paper, the integrability aspects of the coupled
rota equation are analyzed using a Painleve´ singularity struc-
ture analysis. The above system is found to be integrable
the following choices of parameters:~i! c15c2 , a5b
5g, m15n15m25n253; ~ii ! c15c2521, a5b5g, m1
5n15m25n2523; ~iii ! c152c2 , a52b5g, m15
2m252n15n253. As the conditions~i! and ~ii ! are well
studied@11,12#, we are interested in analyzing condition~iii !.
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First, in Sec. II, we establish the Painleve´ property for con-
dition ~iii !. Then, in Sec. III, we construct the soliton sol
tions by a bilinear method.

II. PAINLEVE´ ANALYSIS

Painlevéanalysis is a powerful method for identifying th
complete integrability properties of nonlinear partial diffe
ential equations~NPDEs!. Weiss, Tabor, and Carnevale@21#
introduced an algorithm for carrying out the Painleve´ analy-
sis of given NPDEs.

Under the parametric conditionc152c2 , a52b5g,
andm152m252n15n253, Eq. ~3! turns out to be

iq1z1q1tt12~ uq1u22uq2u2!q1

2 i«@q1ttt1~6uq1u223uq2u2!q1t23q1q2* q2t#50,

iq2z2q2tt22~ uq1u22uq2u2!q2

2 i«@q2ttt1~3uq1u226uq2u2!q2t13q2q1* q1t#50,

~4!

where we choosea51 andc151. To begin with, Eq.~4! is
rewritten in terms of its complex functions by definingq1

5a, q1* 5b, q25c, q2* 5d, and the following equations ar
obtained:

iaz1att12~ab2cd!a

2 i«@attt1~6ab23cd!at23adct#50,

2 ibz1btt12~ab2cd!b

1 i«@bttt1~6ab23cd!bt23bcdt#50,

icz2ctt22~ab2cd!c

2 i«@cttt1~3ab26cd!ct13bcat#50,

2 idz2dtt22~ab2cd!d

1 i«@dttt1~3ab26cd!dt13adbt#50. ~5!

The Painleve´ analysis is carried out by seeking a generaliz
Laurent series of the form

a~z,t !5fp(
j 50

`

aj~z,t !f j~z,t !,

b~z,t !5fq(
j 50

`

bj~z,t !f j~z,t !,

c~z,t !5f r (
j 50

`

cj~z,t !f j~z,t !,

d~z,t !5fs(
j 50

`

dj~z,t !f j~z,t ! ~6!
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in the neighborhood of the noncharacteristic movable sin
lar manifold f(z,t)50 and searching for conditions und
which the solutions are free from movable critical manifold
The parametersp, q, r, and s are negative integers to b
determined.

Assuming the leading order of the solutions to be of
form a'a0fp, d'd0fq, c'c0f r , andd'd0fs, they are
substituted in Eq.~5! and upon balancing the different term
the following results are obtained:

p5q5r 5s521, a0b02c0d052f t
2. ~7!
E
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To find the powers, called resonances, at which the arbit
functions can enter into the Laurent series, the expressio

a5a0f211ajf
j 21, b5b0f211bjf

j 21,

c5c0f211cjf
j 21, d5d0f211djf

j 21, ~8!

are substituted in Eq.~5! and, keeping the leading orde
terms alone, the following determinant is obtained:
U A 26a0
2f t 23~ j 22!a0d0f t 6a0c0f t

26b0
2f t A 6b0d0f t 23~ j 22!b0c0f t

3~ j 22!b0c0f t 26a0c0f t B 6c0
2f t

26b0d0f t 3~ j 22!a0d0f t 6d0
2f t B

U50, ~9!
b-
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where

A5~ j 21!~ j 22!~ j 23!f t
313~ j 22!a0b0f t23~ j 22!f t

3

and

B5~ j 21!~ j 22!~ j 23!f t
323~ j 22!c0d0f t23~ j 22!f t

3.

Expanding the determinant and solving by making use of
~7!, the resonances are obtained as

j 521,0,0,0,1,2,2,3,4,4,4,5. ~10!

The resonance atj 521 corresponds to the arbitrariness
the singularity manifoldf(z,t). From Eq.~7!, it is clear that
any three of the four functionsa0 , b0 , c0 , andd0 are arbi-
trary, corresponding to the resonances atj 50,0,0. To find the
arbitrariness at the other resonance values, to simplify
calculations, Kruskal’s reduced manifold ansatzf(z,t)5z
1c(t)50 is applied, and we proceed further by collecti
the various powers off. Collecting the coefficients o
(f23,f23,f23,f23), the following set of equations is ob
tained:

22a023i«~2a0b0a0t22a0b0a122a0
2b12a0tc0d0

1a1c0d02a0d0c0t1a0c1d012a0c0d1!50,

22b023i«~2a0b0b122a0b0b0t12b0
2a11b0tc0d0

2b1c0d01b0c0d0t2b0c0d122b0c1d0!50,

2c023i«~b0c0a0t2a1b0c012c0
2d122c0tc0d02c1a0b0

1a0b0c0t22a0b1c012c0c1d0!50,

2a023i«~2b0d0a122a0b0td022d0
2c12a0b0d0t1a0b1d0

12c0d0d0t1a0b1d122c0d0d1!50. ~11!
q.

e

From the above set of equations, the following result is o
tained:

a0b11a1b05c0d11c1d0 . ~12!

Substituting Eq.~12! in Eq. ~11!, after simplification, it is
found that one of the four variablesa1 , b1 , c1 , and d1 is
arbitrary, corresponding to the resonance atj 51. In a similar
manner, collecting the coefficients of (f22,f22,f22,f22),
(f21,f21,f21,f21), (f0,f0,f0,f0), and
(f1,f1,f1,f1) one can easily check that the system adm
a sufficient number of arbitrary functions at other resona
values. As the system admits a sufficient number of arbitr
functions, it is concluded that the system is expected to
integrable from the Painleve´ analysis point of view. As we
are not able to construct the Lax pair for Eq.~4!, in the
following the soliton solutions are generated by the biline
method.

III. BILINEAR FORM

Once the integrability is proved, the next step is to lo
for the soliton solutions. Hirota’s bilinear approach@17# is
used here to obtain soliton solutions. In this, the transform
tion

q15
G

F
, q25

H

F
~13!

is introduced, whereG andH are complex functions andF is
a real function, and the bilinear operator is defined as
7-3
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Dz
mDt

nG~z,t !F~z8,t8!

5S ]

]z
2

]

]z8D
mS ]

]t
2

]

]t8D
n

G~z,t !F~z8,t8!U
z5z8,t5t8

.

~14!

Substituting Eq.~13! in Eq. ~4!, one obtains

~ iD z1Dt
22 i«Dt

3!GF50, ~15a!

~ iD z2Dt
22 i«Dt

3!HF50, ~15b!

Dt
2FF52~ uGu22uHu2!. ~15c!

In order to find the single-soliton solution, the following a
satz is assumed:

G5lG1 , H5lH1 , F511l2F2 , ~16!

wherel is an arbitrary parameter. Substituting Eq.~16! in
Eq. ~15! and collecting similar powers ofl, the following
results are obtained:

~ iD z1Dt
22 i«Dt

3!G13150,

~ iD z2Dt
22 i«Dt

3!H13150 for l,

Dt
2~13F21F231!52~ uG1u22uH1u2! for l2. ~17!

One can easily check that the solution that is consistent w
the system containing Eq.~17! is

G15g1 exp~h1!, H15h1 exp~h2!,

F25
~ ug1u22uh1u2!

4v1
2 exp~h11h2!, ~18!

where h15(2«v1
31 iv1

2)z2v1t and h25(2«v1
32 iv1

2)z
2v1t. Substituting Eq.~18! in Eq. ~16! and then in Eq.~13!,
the one-soliton solutions for the coupled Hirota equations
obtained as

q15
v1g1 exp~ iv1

2z!

Aug1u22uh1u2
sech~«v1

3z1v1t1h0!, ~19a!

q25
v1h1 exp~2 iv1

2z!

Aug1u22uh1u2
sech~«v1

3z1v1t1h0!, ~19b!
s

06660
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where h05 ln(2v1 /Aug1u22uh1u2). From the above, it is
clear that the solutions obtained are bright soliton solutio
although we assumed anomalous and normal dispersio
Eq. ~4!.

In this paper, considering higher-order dispersion a
self-steepening, the possibility of soliton-type pulse propa
tion in a system of coupled Hirota equations is analyz
through Painleve´ singularity structure analysis. Using Pain
levé analysis, the coupled Hirota system is found to be in
grable for the following choices of parameters:~i! c1
5c2 , a5b5g, m15n15m25n253; ~ii ! c15c2521, a
5b5g, m15n15m25n2523; ~iii ! c152c2 , a52b
5g, m152m252n15n253. The conditions~i! and ~ii !
have been well studied in the literature. For the condit
~iii !, using Painleve´ analysis, we proved the existence of
sufficient number of arbitrary functions and hence conclud
that the system is integrable. It is also interesting to note
one can check the above condition using the recursion
erator method. Using that method, we can show that co
tions ~i! and ~iii ! are the next hierarchy of Eqs.~1! and ~2!.
Hence we have derived the hierarchy of the coupled N
equations. Soliton solutions have been generated using
Hirota bilinearization technique. Although the soliton cond
tions obtained in this paper are very rigid from the physi
point of view, we would like to point out the following.~i!
First, from optical soliton theory point of view, our syste
adds to the already existing integrable soliton theory and
explain the simultaneous propagation of solitons w
anomalous and normal dispersion.~ii ! In recent years, sev
eral experimental groups have investigated the simultane
propagation of bright and dark solitons in optical fiber. T
soliton solutions given in this paper give some idea about
nature of the pulse width, shape, and velocity of the solito
~iii ! As pointed out in Ref.@14#, one can also construct sol
tary wave solutions without imposing any restrictions on t
physical parameters so that the results obtained can be
lated to real experimental situations. In a recent paper, S
ovich and Tsuchida investigated the Painleve´ property of
symmetrically coupled higher-order NLS equations@22#.
Due to symmetry nature of problem, they have not obtain
the conditions reported in this paper.
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